nanoXIM HAp pastes are nano-hydroxyapatite water based pastes specially recommended to manufacture bone graft substitutes such as injectables for bone regeneration and implants for hard tissues.
The hydroxyapatite nanoparticles comprised in these products form a perfectly aligned structure of nanocrystals.
Due to the similarity between nano-hydroxyapatite and mineralized bone, nanoXIM HAp pastes have a high affinity to hard tissues, establishing chemical bonds with the host tissue.
![]() |
Promotes fast bone regeneration and an early vascularization due to their osteoconductive and osteostimulative properties |
![]() |
Encourages protein adsorption and osteoblast adhesion |
![]() |
Enhances osteoblast functions |
![]() |
Biocompatible material |
![]() |
Resorbable material replaced by new bone during the healing process |
![]() |
Optimal defect filling capacity due to pasty consistency |
![]() |
Hydroxyapatite phase purity (100%) |
![]() |
Hydroxyapatite nanoparticles (< 50 nm) |
![]() |
High surface area |
![]() |
Synthetic material |
nanoXIM•HAp100 is a series of synthetic nano-hydroxyapatite aqueous pastes, manufactured and supplied in two different concentrations, 15 and 30 wt%.
These products comprise nano-hydroxyapatite particles with typical particle size below 50 nm in a rod-like shape (typically 30-40 nm length and 5-10 nm width) suspended in pure water.
Reference | Hydroxyapatite (wt%) | ![]() |
nanoXIM•HAp102 | 15±1.0 | ADD |
nanoXIM•HAp103 | 30±3.0 | ADD |
![]() nanoXIM.HAp Paste |
![]() High Resolution TEM of |
![]() Electron crystallography image |
During bone regeneration, Human Mesenchymal Stem Cells (HMSCs) play an important role as they are recruited to the injured place and differentiate into bone cells, enabling the regeneration process.
Considering the importance of these cells, it was evaluated the biological performance of nanoXIM•HAp102 in the proliferation and osteoblastic differentiation of HMSCs.
O. Yigit, “Thermal, chemical, and structural investigation of the usability of Cs/nHAp-ZnO/Glutaraldehyde polymer matrix composite in potential biomaterial applications”, Arabian Journal of Chemistry, 16(7), 104838 (2023).
C. Tomasina, G. Montalbano, S. Fiorilli, P. Quadros, A. Azevedo, C. Coelho, C. Vitale-Brovarone, S. Camarero-Espinosa, L. Moroni, “Incorporation of strontium-containing bioactive particles into PEOT/PBT electrospun scaffolds for bone tissue regeneration”, Biomater Adv. (149), 213406 (2023).
G.-I. Kontogianni, A.F. Bonatti, C. De Maria, R. Naseem, P. Melo, C. Coelho, G. Vozzi, K. Dalgarno, P. Quadros, C. Vitale-Brovarone, M. Chatzinikolaidou, “Promotion of In Vitro Osteogenic Activity by Melt Extrusion-Based PLLA/PCL/PHBV Scaffolds Enriched with Nano-Hydroxyapatite and Strontium Substituted Nano-Hydroxyapatite”, Polymers, 15 (4), 1052 (2023).
M. Souto-Lopes, L. Grenho, Y.A. Manrique, M.M. Dias, M.H. Fernandes, F.J. Monteiro, C.L. Salgado, “Full physicochemical and biocompatibility characterization of a supercritical CO2 sterilized nano-hydroxyapatite/chitosan biodegradable scaffold for periodontal bone regeneration”, Biomaterials Advances, 146, 213280 (2023).
Y. Liu, S. Sebastian, J. Huang, T. Corbascio, J. Engellau, L. Lidgren, M. Tägil, D.B. Raina, “Longitudinal in vivo biodistribution of nano and micro sized hydroxyapatite particles implanted in a bone defect”, Front. Bioeng. Biotechnol. 10:1076320 (2022).
A. Mahfuri, A. Shehada, K. Darwich, R. Saima, “Radiological Comparative Study Between Conventional and Nano Hydroxyapatite With Platelet-Rich Fibrin (PRF) Membranes for Their Effects on Alveolar Bone Density”, Cureus 14(12): e32381 (2022).
Y. Liu, “Hydroxyapatite – A trojan horse in the delivery of apatite-binding cytostatics in bone cancer.” PhD thesis, Department of Clinical Sciences, Lund University, Faculty of Medicine (2022) .
Y. Liu, A. Nadeem, S. Sebastian, M.A. Olsson, S.N. Wai, E. Styring, J. Engellau, H. Isaksson, M. Tägil, L. Lidgren, D.B. Raina, “Bone mineral: A trojan horse for bone cancers. Efficient mitochondria targeted delivery and tumor eradication with nano hydroxyapatite containing doxorubicin”, Materials Today Bio, 14, 100227 (2022).
K.K. Moncal, R.S.T. Aydın, K.P. Godzik, T.M. Acri, D.N. Heo, E. Rizk, H. Wee, G.S. Lewis, A.K. Salem, I.T. Ozbolat, “Controlled Co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats,” Biomaterials, 281, 121333, (2022).
D.V. Blase, R.G. Dricot, J.F. Lasserre, S. Toma, M.C. Brecx, “Combination of a Hydraulic Device and Nanohydroxylapatite Paste for Minimally Invasive Transcrestal Sinus Floor Elevation: Procedure and 4-Year Results.”, The International Journal of Oral & Maxillofacial Implants, 36(3), p. 587 (2021).
P. Melo, G. Montalbano, S. Fiorilli, C. Vitale-Brovarone, “3D Printing in Alginic Acid Bath of In-Situ Crosslinked Collagen Composite Scaffolds”. Materials, 14(21), 6720 (2021).
N. Ribeiro, A. Sousa, C. Cunha-Reis, A.L. Oliveira, P.L. Granja, F.J. Monteiro, S.R. Sousa, “New prospects in skin regeneration and repair using nanophased hydroxyapatite embedded in collagen nanofibers”, Nanomedicine: Nanotechnology, Biology and Medicine, 33, 102353 (2021).
P. Melo, R. Naseem, I. Corvaglia, G. Montalbano, C Pontremoli, A. Azevedo, P. Quadros, P. Gentile, A.M. Ferreira, K. Dalgarno, C. Vitale-Brovarone, S. Fiorilli, “Processing of Sr2+ Containing Poly L-Lactic Acid-Based Hybrid Composites for Additive Manufacturing of Bone Scaffolds”, Front. Mater. 7:601645. doi: 10.3389/fmats.2020.601645 (2020).
H Yue, Q Zhu, S Dong, Y Zhou, Y Yang, L Cheng, M. Qian, L. Liang, W. Wei, H. Wang “A Nanopile Interlocking Separator Coating towards Uniform Li Deposition of the Li Metal Anodes” ACS Appl. Mater. Interfaces, doi:10.1021/acsami.0c08776 (2020).
R.V. Pinto, P.S. Gomes, M.H. Fernandes, M.E.V. Costa, M.M. Almeida, “Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications”, Materials Science & Engineering C, 109, 110557, doi:10.1016/j.msec.2019.110557 (2020) .
I. Corvaglia, “Design and optimization of hybrid formulations based on PLLA and inorganic phases for 3D printing of bone scaffolds”, MSc thesis in Biomedical Engineering, Politecnico di Torino (2020).
L. Siqueira, N. Ribeiro, M.B.A. Paredes, L. Grenho, C. Cunha-Reis, E.S. Trichês, M.H. Fernandes, S.R. Sousa, F.J. Monteiro , “Influence of PLLA/PCL/HA Scaffold Fiber Orientation on Mechanical Properties and Osteoblast Behavior”, Materials, 12, 3879, doi:10.3390/ma12233879 (2019).
R.N. Salaie, A. Besinis, H. Le, C. Tredwin, R.D. Handy, “The biocompatibility of silver and hydroxyapatite coatings on titanium dental implants with human primary osteoblast cells”, Materials Science & Engineering C, doi.org/10.1016/j.msec.2019.110210 (2019).
D. Kołbuk, O. Urbanek, P. Denis, E. Choińska, “Sonochemical coating as an effective method of polymeric nonwovens functionalization”, Journal of Biomedical Materials Research – Part A, p. 65 (2019).
C. Santos, S. Turiel, P.S. Gomes, E. Costa, A. Santos Silva, P. Quadros, J. Duarte, S. Battistuzzo, M.H. Fernandes, “Vascular biosafety of commercial hydroxyapatite particles: discrepancy between blood compatibility assays and endothelial cell behavior”, Journal of Nanobiotechnology, 16(27), doi: 10.1186/s12951-018-0357-y (2018).
G. Ruphuy, T. Weide, J.C.B. Lopes, M.M. Dias, M.F. Barreiro, “Preparation of nano-hydroxyapatite/chitosan aqueous dispersions: from lab scale to continuous production using an innovative static mixer”, Carbohydrate Polymers, 202, p. 20 (2018).
D. Dzhurinskiy, “Bioactive antimicrobial coatings for implantable medical devices formed by plasma electrolytic oxidation”, Metal Forming XXIX (1), p. 65 (2018).
J.D.F. Queiroz, “Avaliação da resposta celular a biomateriais para fins de regeneração óssea”, PhD Thesis in Health Sciences, Universidade Federal do Rio Grande do Norte (2018).
G. Ruphuy, M. Souto-Lopes, D. Paiva, P. Costa, A.E. Rodrigues, F.J. Monteiro, C.L. Salgado, M.H. Fernandes, J.C. Lopes, M.M. Dias, M.F. Barreiro, “Supercritical CO2 assisted process for the production of high-purity and sterile nano-hydroxyapatite/chitosan hybrid scaffolds”, J Biomed Mater Res Part B, DOI: 10.1002/jbm.b.33903 (2017).
Y. Ryabenkova, A. Pinnock, P.A. Quadros, R.L. Goodchild, G. Möbus, A. Crawford, P.V. Hatton, C.A. Miller, “The relationship between particle morphology and rheological properties in injectable nano-hydroxyapatite bone graft substitutes”, Materials Science and Engineering: C, 75, p. 1083, (2017).
V. Hruschka, S. Tangl, Y. Ryabenkova, P. Heimel, D. Barnewitz, G. Möbus, C. Keibl, J. Ferguson, P. Quadros, C. Miller, R. Goodchild, W. Austin, H. Redl, T. Nau, “Comparison of nanoparticular hydroxyapatite pastes of different particle content and size in a novel scapula defect model”, Nature Scientific Reports 7, Article number: 43425; doi: 10.1038/srep43425 (2017).
A. Besinis, S. D. Hadi, H. R. Le, C. Tredwin, R. D. Handy, “Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings”, Nanotoxicology, DOI: 10.1080/17435390.2017.1299890 (2017).
E. Oris, “Optimisation and characterisation of nano-hydroxyapatite/polylactide composites using Fused Deposition Modelling technology”, MSc Thesis, University of Hasselt (2017).
W. K. Yeung, I. V. Sukhorukova, D. V. Shtansky, E. A. Levashov, I. Y. Zhitnyak, N. A. Gloushankova, P. V. Kiryukhantsev-Korneev, M. I. Petrzhik, A. Matthews, A. Yerokhin, “Characteristics and in vitro response of thin hydroxyapatite–titania films produced by plasma electrolytic oxidation of Ti alloys in electrolytes with particle additions”, The Royal Society of Chemistry Advances, 6, p. 12688 (2016).
F.J. Monteiro, N. Ribeiro, S.R. Sousa, L. Moroni, “Mesh composition for repairing or the regeneration of tissues and methods thereof”, WO/2015/162559A1.
D. Dzhurinskiy, Y.Gao, W.-K. Yeung, E. Strumban, V. Leshchinsky, P.-J.Chu, A. Matthews, A. Yerokhin, R.Gr. Maev, “Characterization and corrosion evaluation of TiO2:n-HA coatings on titanium alloy formed by plasma electrolytic oxidation”, Surface & Coatings Technology, 269, p.258 (2015).
N. Ribeiro, S.R. Sousa, C.A. van Blitterswijk, L. Moroni, F.J. Monteiro, “A biocomposite of collagen nanofibers and nanohydroxyapatite for bone regeneration, Biofabrication, 6(3), p. XXX (2014).
A. Zomorodian, M.P. Garcia, T. Moura e Silva, J.C.S. Fernandes, M.H. Fernandes, M.F. Montemor, “Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy”, Materials Science and Engineering C, 48, p. 434 (2014).
G. Ruphuy, J.C. Lopes, M. Dias, M.F. Barreiro, “Preparation of hydroxyapatite nanodispersions in the presence of chitosan by ultrasonication”, Conference Paper for International Conference on Biobased Materials and Composites (ICBMC), 13-16 May, Montreal, Canada (2014).
M. Zhuk, “Nanostructured granules for controlled delivery of dexamethasone” MSc Thesis, Aveiro University (2014).
M. V. Torres, “An experimental procedure for Reaction Injection Moulding – RIM – materials formulation design”, PhD Thesis in Chemical and Biological Engineering, Department of Chemical Engineering, University of Porto (2014).
S.D. Hadi, “The Antibacterial Properties and Biocompatibility of Silver and Hydroxyapatite Nanoparticles Coating on Dental Implants”, MSc Thesis, School of Biological Sciences, Faculty of Science and Environment, University of Plymouth, UK (2014).
V. Reis, “Resposta biológica à implantação subcutânea de nanopartículas de hidroxiapatite em ratos diabéticos”, MSc Thesis Biologia Clínica Laboratorial, Universidade de Trás-os-Montes e Alto Douro (2013).
T. Cheng, Y. Chen, X. Nie, “Insertion torques influenced by bone density and surface roughness of HA–TiO2 coatings”, Thin Solid Films 549, p. 123 (2013).
E. Pires, "Effect of the nanohydroxyapatite Formulation NanoXIM.HAp102 on the Proliferation and Osteogenic Differentiation of Human Bone Mesenchymal Stem Cells", Integrated MSc Thesis in Bioengineering, Faculty of Engineering, University of Porto (2013).
F. Pinto, “Citocompatibilidade de matrizes de quitosano/fosfato de cálcio (Cytocompatility of chitosan/calcium phosphate scaffolds)” MSc Thesis, Aveiro University (2013).
P.A.A.P. Marques, G. Gonçalves, M.K. Singh, J. Grácio, “Graphene oxide and hydroxyapatite as fillers of polylactic acid nanocomposites: preparation and characterization.”, Journal of Nanoscience and Nanotechnology, 12, p. 6686 (2012).
L. Marbelia, “Chitosan based scaffolds for bone regeneration” MSc Thesis, University of Aveiro (2011).
Mesquita, “Matrizes de quitosano/grânulos bifásicos para libertação de fármacos (Chitosan/biphasic granules scaffolds for drug delivery)” MSc Thesis, Aveiro University (2012).
This site uses cookies to improve your usage experience. By continuing to browse, you agree to the use of the same.
You may change the cookie usage settings in your browser settings. Learn more.